[image: image2.jpg]

[image: image1.png])
\WMALBA»ILW
1t Ours

[image: image2.jpg]Are the imports checked for validity at compile time? e.g. will the code containing an import such as java.lang.ABCD compile?
A: Yes the imports are checked for the semantic validity at compile time. The code containing above line of import will not compile. It will throw an error saying,can not resolve symbol symbol : class ABCD location: package io import java.io.ABCD; [Received from Sandesh Sadhale]TOP
Q: Does importing a package imports the subpackages as well? e.g. Does importing
com.MyTest.* also import com.MyTest.UnitTests.*? A: No you will have to import the subpackages explicitly. Importing com.MyTest.* will import
classes in the package MyTest only. It will not import any class in any of it's subpackage. [Received from Sandesh Sadhale]TOP
Q: What is the difference between declaring a variable and defining a variable?
TOPA: In declaration we just mention the type of the variable and it's name. We do not initialize it. But defining means declaration + initialization. e.g String s; is just a declaration while String s = new String ("abcd"); Or String s = "abcd"; are both definitions. [Received from Sandesh Sadhale]
Q: What is the default value of an object reference declared as an instance variable?

A: null unless we define it explicitly. [Received from Sandesh Sadhale]
Q: Can a top level class be private or protected?
TOP

TOPA: No. A top level class can not be private or protected. It can have either "public" or no modifier. If it does not have a modifier it is supposed to have a default access.If a top level class is declared as private the compiler will complain that the "modifier private is not allowed here". This means that a top level class can not be private. Same is the case with protected. [Received from Sandesh Sadhale]

Q: What type of parameter passing does Java support?
A: In Java the arguments are always passed by value . [Update from Eki and Jyothish Venu]
Q: Primitive data types are passed by reference or pass by value?
A: Primitive data types are passed by value. [Received from Sandesh Sadhale]
TOP
TOP

Q: Objects are passed by value or by reference?
TOPA: Java only supports pass by value. With objects, the object reference itself is passed by value and so both the original reference and parameter copy both refer to the same object . [Update from Eki and Jyothish Venu]
Q: What is serialization?
TOPA: Serialization is a mechanism by which you can save the state of an object by converting it to a byte stream. [Received from Sandesh Sadhale]
Q: How do I serialize an object to a file?
A: The class whose instances are to be serialized should implement an interface Serializable. Then you pass the instance to the ObjectOutputStream which is connected to a fileoutputstream. This will save the object to a file. [Received from Sandesh Sadhale]TOP
Q: Which methods of Serializable interface should I implement?
TOPA: The serializable interface is an empty interface, it does not contain any methods. So we do not implement any methods. [Received from Sandesh Sadhale]
Q: How can I customize the seralization process? i.e. how can one have a control over
the serialization process? A: Yes it is possible to have control over serialization process. The class should implement
TOPExternalizable interface. This interface contains two methods namely readExternal and writeExternal. You should implement these methods and write the logic for customizing the serialization process. [Received from Sandesh Sadhale]
Q: What is the common usage of serialization?
TOPA: Whenever an object is to be sent over the network, objects need to be serialized. Moreover if the state of an object is to be saved, objects need to be serilazed. [Received from Sandesh Sadhale]
Q: What is Externalizable interface?
TOPA: Externalizable is an interface which contains two methods readExternal and writeExternal. These methods give you a control over the serialization mechanism. Thus if your class implements this interface, you can customize the serialization process by implementing these methods. [Received from Sandesh Sadhale]
Q: When you serialize an object, what happens to the object references included in
the object?

TOPA: The serialization mechanism generates an object graph for serialization. Thus it determines whether the included object references are serializable or not. This is a recursive process. Thus when an object is serialized, all the included objects are also serialized alongwith the original obect. [Received from Sandesh Sadhale]
Q: What one should take care of while serializing the object?
TOPA: One should make sure that all the included objects are also serializable. If any of the objects is not serializable then it throws a NotSerializableException. [Received from Sandesh Sadhale]
Q: What happens to the static fields of a class during serialization?
A: There are three exceptions in which serialization doesnot necessarily read and write to the
stream. These are 1. Serialization ignores static fields, because they are not part of ay particular state state. 2. Base class fields are only hendled if the base class itself is serializable. 3. Transient fields.

[Received from Sandesh Sadhale Modified after P.John David comments.]
TOP

Does Java provide any construct to find out the size of an object? A: No there is not sizeof operator in Java. So there is not direct way to determine the size of

an object directly in Java. [Received from Sandesh Sadhale]
TOP

Q: Give a simplest way to find out the time a method takes for execution without
using any profiling tool? A: Read the system time just before the method is invoked and immediately after method
returns. Take the time difference, which will give you the time taken by a method for execution.
To put it in code...
long start = System.currentTimeMillis (); method (); long end = System.currentTimeMillis ();
System.out.println ("Time taken for execution is " + (end - start));
Remember that if the time taken for execution is too small, it might show that it is taking zero milliseconds for execution. Try it on a method which is big enough, in the sense the one which is doing considerable amout of processing.

[Received from Sandesh Sadhale]
Q: What are wrapper classes?
TOP

TOPA: Java provides specialized classes corresponding to each of the primitive data types. These are called wrapper classes. They are e.g. Integer, Character, Double etc. [Received from Sandesh Sadhale]

Q: Why do we need wrapper classes?
TOPA: It is sometimes easier to deal with primitives as objects. Moreover most of the collection classes store objects and not primitive data types. And also the wrapper classes provide many utility methods also. Because of these resons we need wrapper classes. And since we create instances of these classes we can store them in any of the collection c lasses and pass them around as a collection. Also we can pass them around as method parameters where a method expects an object. [Received from Sandesh Sadhale]
Q: What are checked exceptions?
TOPA: Checked exception are those which the Java compiler forces you to catch. e.g. IOException are checked Exceptions. [Received from Sandesh Sadhale]
Q: What are runtime exceptions?
A: Runtime exceptions are those exceptions that are thrown at runtime because of either wrong input data or because of wrong business logic etc. These are not checked by the compiler at compile time. [Received from Sandesh Sadhale]TOP
Q: What is the difference between error and an exception?
TOPA: An error is an irrecoverable condition occurring at runtime. Such as OutOfMemory error. These JVM errors and you can not repair them at runtime. While exceptions are conditions that occur because of bad input etc. e.g. FileNotFoundException will be thrown if the specified file does not exist. Or a NullPointerException will take place if you try using a null reference. In most of the cases it is possible to recover from an exception (probably by giving user a feedback for entering proper values etc.). [Received from Sandesh Sadhale]

Q: How to create custom exceptions?
A: Your class should extend class Exception, or some more specific type thereof. [Received from Sandesh Sadhale]
TOP

Q: If I want an object of my class to be thrown as an exception object, what should I
do? A: The class should extend from Exception class. Or you can extend your class from some

more precise exception type also. [Received from Sandesh Sadhale]
TOP

Q: If my class already extends from some other class what should I do if I want an
instance of my class to be thrown as an exception object? A: One can not do anytihng in this scenarion. Because Java does not allow multiple inheritance
and does not provide any exception interface as well.

[Received from Sandesh Sadhale]
Q: How does an exception permeate through the code?
TOP

TOPA: An unhandled exception moves up the method stack in search of a matching When an exception is thrown from a code which is wrapped in a try block followed by one or more catch blocks, a search is made for matching catch block. If a matching type is found then that block will be invoked. If a matching type is not found then the exception moves up the method stack and reaches the caller method. Same procedure is repeated if the caller method is included in a try catch block. This process continues until a catch block handling the appropriate type of exception is found. If it does not find such a block then finally the program terminates. [Received from Sandesh Sadhale]
Q: What are the different ways to handle exceptions?
A: There are two ways to handle exceptions, 1. By wrapping the desired code in a try block followed by a catch block to catch the exceptions. and 2. List the desired exceptions in the throws clause of the method and let the caller of the method hadle those exceptions. [Received from Sandesh Sadhale]TOP
Q: What is the basic difference between the 2 approaches to exception handling.
1> try catch block and 2> specifying the candidate exceptions in the throws clause? When should you use which approach?
A: In the first approach as a programmer of the method, you urself are dealing with the exception. This is fine if you are in a best position to decide should be done in case of an exception. Whereas if it is not the responsibility of the method to deal with it's own exceptions, then do not use this approach. In this case use the second approach. In the second approach we are forcing the caller of the method to catch the exceptions, that the method is likely to throw. This is often the approach library creators use. They list the exception in the throws clause and we must catch them. You will find the same approach throughout the java libraries we use. [Received from Sandesh Sadhale]TOP
Q: Is it necessary that each try block must be followed by a catch block?
TOPA: It is not necessary that each try block must be followed by a catch block. It should be followed by either a catch block OR a finally block. And whatever exceptions are likely to be thrown should be declared in the throws clause of the method. [Received from Sandesh Sadhale]
Q: If I write return at the end of the try block, will the finally block still execute?
TOPA: Yes even if you write return as the last statement in the try block and no exception occurs, the finally block will execute. The finally block will execute and then the control return. [Received from Sandesh Sadhale]

Q: If I write System.exit (0); at the end of the try block, will the finally block still
execute? A: No in this case the finally block will not execute because when you say System.exit (0); the

control immediately goes out of the program, and thus finally never executes. [Received from Sandesh Sadhale]
TOP

